
21

Volume 7, Number 1, (2024) Pages 21-34Journal homepage: www.ajses.az

1  The University of Warwick, 

Warwick Business School

Coventry, United Kingdom, CV4 7AL

Anar Sultanzada¹

VOLATILITY FORECASTING FOR ETHEREUM: 

A COMPARISON OF ARCH AND GARCH-TYPE MODELS

ABSTRACT

The primary objective of this study is to examine the volatility dynamics 

of Ethereum, a highly renown cryptocurrency, using time-series 

econometric models. Utilising a dataset comprising 2,700 observations, 

this study employs ARCH and GARCH-type volatility models, namely 

ARCH (1), GARCH (1,1), GJR-GARCH, and EGARCH (1,1), to essen-

tially capture the pa�erns of Ethereum volatility. The models undergo 

thorough testing to assess their goodness-of-fit, employing criteria such 

as AIC, BIC, and HQIC, in addition to conducting residual diagnostics to 

identify conditional heteroskedasticity and autocorrelation.

The EGARCH (1,1) model was found to be the best-fi�ed model, provi-

ding insights into the leverage effects observed in the Ethereum market. 

The forecasting performance of the model was evaluated using out-of-

sample data for a period of 31 trading days in August 2023. The results 

demonstrated the model's strong out-of-sample predictive ability, as 

indicated by a Mean Absolute Percentage Error (MAPE) and percentage 

of correct sign prediction methods. The study concludes by highlighting 

the limitations pertaining to the research and potential directions for 

future studies.
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INTRODUCTION 

The emergence of cryptocurrencies has had a profound influence on the dynamic and evolving 

nature of financial markets, fundamentally transforming the conventional understanding of 

asset classes. Ethereum is widely recognized as a prominent and influential cryptocurrency 

within the digital currency landscape. Accurately forecasting the volatility of Ethereum holds 

significant importance for a diverse range of stakeholders, encompassing investors, traders, 

and financial regulators. This is essential for the formulation of investment strategies and the 

effective regulation of financial markets. Autoregressive Conditional Heteroskedasticity 

(ARCH) and Generalized ARCH models have been widely utilized for volatility forecasting in 

traditional financial markets, with encouraging results. With their ability to take volatility 

clustering and leverage effects into account, these models have the potential to offer analytical 

forecasting ability for the volatility of Ethereum. This paper aims to provide a comparison of 

the predictive capabilities of different GARCH models in forecasting the volatility of Ethereum 

while further testing the out-of-sample predicting ability of the better-fitted model. 

Ethereum fundamentally differs from its peer cryptocurrency, Bitcoin. Ether (ETH), Ethereum's 

native crypto asset, can be used as a medium of exchange, but its main purpose is to act as a 

platform for decentralised applications (Vujicic et al., 2018). Ethereum was launched by Vitalik 

Buterin in 2015 to address the several limitations of Bitcoin, majorly offering full Turing-

completeness, indicating that loops are supported along with all other types of computations 

on Ethereum (Bouichou et al., 2020). The smart contract functionality of Ethereum is renowned 

for enabling the development and operation of decentralised applications on its platform free 

from fraud, interference, control, and downtime (Buterin, 2013). 

Ethereum's smart contract capability improved potential ways for Initial Coin Offerings (ICO), 

thus a new form of crowdfunding that gained a lot of traction in 2017 (Adhami et al., 2018). As 

a result, the Ethereum ecosystem has seen a significant amount of growth and capital flow, 

which has added another level to its valuation dynamics. Although Ethereum and Bitcoin are 

similar in terms of decentralisation, proof-of-work consensus, and cryptographic foundation, 

they diverge in terms of their overall mission and potential applications (Narayanan et al., 

2016). Similar to Bitcoin, Ethereum has also been thought of as a possible portfolio hedge or 

diversifier in terms of how it interacts with conventional assets (Bouri et al., 2019). Thus, its 

value proposition extends beyond just being a speculative asset. 

The majority of the academic literature appears to focus on examining the returns and 

addressing the volatility linked to Bitcoin, which is regarded as a leading cryptocurrency in the 

market (Peng et al., 2018). While there have been a number of studies comparing ARCH and 

GARCH-type models on predicting the volatility of Ethereum (see Fakhfekh and Jeribi (2020) 

and Ngunyi et al. (2019)), these studies did not provide insights on the out-of-sample 

forecasting power of the better-fitted model in comparison with the actual volatility. 

Consequently, there is a limited understanding of how the better model performs in predicting 

the out-of-sample volatility in comparison to the actual volatility fitted by the same model. 

Thus, by taking a longer sample period since the introduction of Ethereum, this paper aims to 

provide the existing literature by investigating the predictability power of the better-fitted 

model in the out-of-sample one-month period, capturing the short-term dynamics of a 

financial time series.  
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The investment community has shown significant interest in Ethereum due to the diversi-

fication benefits it offers (Khaki et al., 2023). This study aims to provide valuable insights for 

portfolio construction considerations and will also be of relevance to a variety of stakeholders, 

including investors, traders, and financial regulators. 

1. LITERATURE REVIEW 

In recent years, cryptocurrencies have exploded in popularity, with Ethereum and Bitcoin as 

two major players in terms of market capitalization (Coinmarketcap, accessed on 21st July 

2023). Cryptocurrencies, according to the European Central Bank, are virtual currency schemes 

with a sizable potential impact on the financial industry (ECB, 2012 p.21). Particularly, 

Ethereum's growing significance stems from its inherent abilities that go beyond those of a 

digital currency, such as the ability to enable smart contracts, which have sparked the 

emergence of Decentralised Finance (DeFi) applications (Cong et al., 2021).  

GARCH models were initially introduced by Bollerslev (1986) and their variants are 

commonly used to model exchange rates and cryptocurrency volatility. Developed from 

Engle's (1982) work on the ARCH model, the GARCH model sought to offer a more effective 

method for identifying and measuring volatility in the financial markets. GARCH models 

benefit from their dependence on conditional variance of past observations which in turn 

allows simple and realistic estimation of parameters. Engle & Patton (2001) expanded our 

understanding regarding those models by analysing asymmetry in GARCH models. They 

developed a concept of leverage effect; a phenomenon whereby negative shocks typically tend 

to have a larger impact on volatility compared to positive shocks of the same magnitude. Thus, 

they described several GARCH model extensions that support asymmetric shock responses, 

including the Exponential GARCH (EGARCH) and the Glosten-Jagannathan-Runkle (GJR) 

GARCH model. However, the leverage effect in cryptocurrency markets illustrates an 

interesting phenomenon. Jing-Zhi et al. (2022) incorporated the stochastic volatility model with 

co-jumps (SVCJ) and concluded that the leverage effect differs across cryptocurrencies; while 

Bitcoin exhibited a negative diffusive return-volatility relationship till January 2014 and a 

positive one since then, Ethereum showed strong generalized leverage effect overall. In 

another study, Baur & Dimpfl (2018) further investigated the asymmetric volatility of 20 

cryptocurrencies, including Ethereum. They concluded a different asymmetry compared to 

traditional equity markets; positive shocks have a greater impact on volatility than negative 

shocks. They explained this phenomenon by addressing the trading activity of uninformed 

investors which amplifies the positive volatility shocks in the market, consistent with the “fear 

of missing out” effect. To address this asymmetry, Naimy & Hayek (2018) used asymmetric 

GARCH models, such as EGARCH and GJR-GARCH to predict Bitcoin volatility in both in-

sample and out-of-sample periods. They concluded that the EGARCH (1,1) model provides 

better estimates of volatility than the GARCH (1,1) and EWMA models.  

Chu et al. (2017) used GARCH models to analyse the volatility of seven well-known 

cryptocurrencies: Bitcoin, Dash, Dogecoin, Litecoin, Maidsafecoin, Monero, and Ripple. They 

concluded that the IGARCH and GJRGARCH models exhibit superior performance in terms of 

accurately modelling the volatility patterns observed in the selected cryptocurrencies. The 

paper did not, however, examine Ethereum's volatility, therefore it did not offer a thorough 

comparison of Ethereum to other cryptocurrencies. Katsiampa (2017), on the other hand, 

estimated the volatility of Bitcoin using GARCH models. Her application of GARCH models to 
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cryptocurrency volatility was quite insightful as she concluded that the AR-CGARCH model 

provided the best fit, offering valuable insights for similar applications to other cryptocur-

rencies, including Ethereum.  

Fakhfekh and Jeribi (2020) applied five different GARCH-type models to compare their 

forecasting abilities on sixteen cryptocurrencies, including Ethereum and concluded that the 

TGARCH model with double exponential distribution fits the best for prediction purposes 

using AIC and BIC information criterion. Ngunyi et al. (2019) conducted an analysis on eight 

most popular cryptocurrencies, including Ethereum, by employing various GARCH-type 

models with various error distributions. Their findings revealed that the asymmetric GARCH 

models, characterised by long memory property and heavy-tailed innovations, exhibited the 

most optimal fit across all examined cryptocurrencies. Suraya F.R et al. (2023) compared 

Ethereum’s price volatility with that of Bitcoin using the GARCH (p,q) models and concluded 

that GARCH (1,1) performs better. They also noted that Ethereum’s volatility showed more 

likely long-run persistence, while Bitcoin’s short-term persistence is stronger.  

Mohammed et al. (2020) proposed an exponential GARCH model based on wavelets to 

forecast the volatility of financial time series, demonstrating that this model outperformed the 

standard GARCH model. Despite the study's lack of attention to Ethereum, it offered a 

potential framework for enhancing its volatility prediction using a wavelet-based GARCH 

method. With the context of this analysis, Kaya Soylu et al. (2020) investigated long memory in 

the volatility of Bitcoin, Ethereum, and Ripple using a Fractional Integrated GARCH 

(FIGARCH) model. They found that compared to that of Bitcoin, the Fractional Integrated 

GARCH (FIGARCH) model with skewed student distribution produces a better estimate for 

Ethereum volatility.  

Markov-switching GARCH models were used by Caporale and Zekokh (2019) to simulate the 

volatility of Bitcoin, Ethereum, Ripple, and Litecoin. They discovered that these models were 

useful for identifying changes in these cryptocurrencies' volatility regimes. This study offers 

concrete proof that GARCH models, particularly the Markov-Switching variant, could be 

effective for predicting Ethereum volatility. They concluded that standard GARCH models 

yield ineffective results for VAR and ES predictions, therefore the GARCH models that 

included asymmetry elements outperform the others. Similarly, Cerqueti et al. (2020) used 

Skewed non-Gaussian GARCH models to enhance the accuracy of cryptocurrency volatility 

forecasts. They concluded that the best volatility estimations are observed for skewed 

distribution in the case of the Ethereum/USD pairs. 

In volatility prediction, the phenomenon of volatility asymmetry and spillover effects are 

crucial factors to consider. This interdependence of cryptocurrency markets is highlighted by 

Bouri et al. (2019), examining how the volatility of one cryptocurrency can affect that of other 

cryptocurrencies. They determined that in order to produce reliable forecasts, GARCH 

modelling of Ethereum volatility should take these spillover effects into consideration. They 

concluded a multidirectional co-explosivity behaviour associated with the cryptocurrency 

market. In this context, the works of Katsiampa et al. (2019), Diniz et al. (2023), Ma & Luan 

(2022), and Mensi et al. (2020) are especially relevant because they explore the nuances of 

volatility dynamics in the cryptocurrency market in greater detail. They all concluded that 

asymmetric volatility and spillover effects are not constant across all cryptocurrencies and 

change over time. Because these effects are dynamic, the volatility forecasting model for 

Ethereum should be dynamic and constantly updated. 
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The recent surge in the integration of machine learning techniques into volatility forecasting 

offers a new outlook through which we can evaluate the predictability power of GARCH 

models, especially during the volatile period surrounding the COVID-19 pandemic. 

Akyildirim et al. (2021) applied Machine Learning classification algorithms, including logistic 

regression, support vector machines (SVM), random forests, and artificial neural networks. 

They concluded that the average prediction accuracy of those models is above 50%, which 

indicates that the cryptocurrency markets allow for some degree of price trend predictability 

and provide more accurate forecasts compared to traditional methods in volatile periods. They 

indicated that the best-performing prediction model is SVM with the smallest degree of errors.  

Peng et al. (2018) conducted an evaluation of the predictive performance of GARCH models 

for three cryptocurrencies (Bitcoin, Ethereum, and Dash) respective to their volatility in three 

currencies, namely the Euro, GB Pound, and Japanese Yen. They employed a combination of 

the conventional GARCH model and the Machine Learning framework in order to estimate the 

pertinent equations for mean and volatility. The researchers reached the conclusion that the 

SVR-GARCH models exhibited superior performance compared to the GARCH, EGARCH, 

and GJR-GARCH models considering both Normal and Skewed Student's t distributions for 

error terms. Garcia-Medina et al. (2023) employed a hybrid model that integrates GARCH and 

deep learning techniques to forecast the volatility of a cryptocurrency portfolio. The 

researchers reached the conclusion that deep learning methods of various types exhibit 

superior performance compared to GARCH models in terms of both absolute and squared 

errors. 

Using the Magnitude of the Long Memory Index, Mnif et al. (2020) further emphasized that, 

unlike Bitcoin, Ethereum is much more efficient during the COVID-19 period than before the 

pandemic. Ftiti et al. (2021) examined whether the COVID crisis period had an influence on 

cryptocurrency market dynamics. They applied a mix of heterogeneous autoregressive (HAR) 

models and found that the models embedded positive and negative jumps provide better 

predictability for both crisis and non-crisis periods. Furthermore, they concluded that only 

negative jumps appeared to be statistically significant during the crisis period. 

2. DATA AND METHODOLOGY 

The data for the daily closing prices for the Ethereum used in the research shall be collected 

from investing.com (Ethereum Historical Data - Investing.com) for the period between March 

10, 2016 (earliest available period) and July 31, 2023, corresponding to 2700 observations. Daily 

returns have been calculated by taking the natural logarithm of the ratio of two consecutive 

price levels. Figure 1 demonstrates both the Ethereum price level and price returns covering 

the corresponding period. 

 
Figure 1. Daily closing prices and price returns of the Ethereum (US Dollars). 
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The study utilises an autoregressive model to estimate the conditional mean and employs first-

order ARCH and GARCH-type models to estimate the conditional variance1. Specifically, 

ARCH (1), GARCH (1,1), GJR-GARCH (1,1), and EGARCH (1,1) models are compared. 

Returns are estimated using the AR (1) model for each auto-regressive model. The model 

specification can be generalized as follows: 

𝑟𝑡 = 𝑐 + ∑ 𝜙𝑖𝑟𝑡−1

𝑠

𝑖=1

+ 𝑢𝑡, 

𝑢𝑡 = ℎ𝑡𝑧𝑡 , 𝑧𝑡  ~ 𝑖. 𝑖. 𝑑. (0,1),  

where rt denotes Ethereum price return at time t, ut demonstrates the error term, zt is a white 

noise process, and ht is a standard deviation.  

The optimal model selection is based on Box Jenkins information criteria methodology, 

specifically comparing Akaike (AIC), Bayesian (BIC) and Hannan–Quinn (HQ) criteria, all 

consider the fit of the model and the number of parameters that are used in each model, 

awarding a better fitting model and adding a penalty for each additional parameter that is 

used. The best model is the one that satisfies minimum criteria values. Moreover, the 

forecasting ability of the best-chosen model is tested against the actual volatility fitted by the 

same model for 31 out-of-sample trading days (between August 1, 2023, and August 31, 2023). 

Mean Absolute Percentage Error (MAPE) and percentage of correct sign-predictions 

forecasting criteria models shall be used to evaluate the model’s ability to predict the volatility 

of Ethereum. 

This section explains the econometric frameworks used in this study - the ARCH (1), GARCH 

(1,1), GJR-GARCH (1,1), and EGARCH (1,1) models. Each of these models brings its own set of 

assumptions, strengths, and limitations. 

The ARCH (Auto-regressive Conditional Heteroskedasticity) model was a groundbreaking 

model developed by Robert Engle in 1982, a contribution that would later win him the Nobel 

Prize in Economics. ARCH (1) model that is used in the methodology can be specified as 

follows: 

rt = ϕ0 + ϕ1yt−1 + ξt 

ξt = σt zt 

σt2 = α0 + α1ξt-12 

where ξt is a return residual, σt is a conditional volatility, and zt is a white noise error term. 

Major assumptions used in the ARCH (1) model include the residuals following a normal 

distribution with a zero mean, and volatility can simply be determined using a linear function 

of past squared residuals.  

Developed by Bollerslev in 1986, the standard GARCH (1,1) model has: 

 

σt2 = α0 + α1ξt-12 + β1 σt-12 

                                                      
1 For simplicity, this study primarily employs lower-order GARCH models, as they have the capability to capture a significant 

portion of the non-linearities present in the conditional variance. 
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for α0 > 0, α1 > 0, and β1 > 0. One notable enhancement of the standard GARCH model, in 

comparison to the ARCH model, is its ability to effectively capture the phenomenon of 

volatility clustering that is observed within the sample data. 

Glosten et al. (1993) further improved the GARCH models by adding a variable that takes into 

account the asymmetric responses to positive and negative shocks, naming the model GJR-

GARCH. The model can be mathematically represented as follows: 

σt2 = α0 + α1ξt-12 + γ1It−1Zt−12 + β1 σt-12 

for α0 > 0, α1 > 0, γ1 > 0, and β1 > 0, where It−1 = 1 if Zt−1 < 0, and It−1 = 0 if Zt−1 > 0. In the GJR 

model, the occurrence of a positive shock at time t leads to an increase in volatility by α1. 

Conversely, a negative shock at time t results in an increase in volatility by α1 plus γ1. 

Developed by Nelson (1991), the Exponential GARCH (EGARCH) is another extension to the 

standard GARCH model:  

log(σt2)= α0 + α1[
|ξt-1|

√σ2t-1

−  
2

π
] + ψ

ξt-1

√σ2t-1
+ β log σt-12 

for α0 > 0, α1 > 0, ψ> 0, and β > 0. The major specification for the EGARCH model is that the 

model is written as a function of past standardized innovations in variance, instead of past 

innovations. The model also takes into account the leverage effect.  

The models are estimated using Maximum Likelihood Estimation (MLE). We assume 

Gaussian distributed error terms in the estimation process.  

The utilisation of information criterion techniques, namely AIC, BIC, and HQIC, is employed 

to identify a model that offers a more optimal fit for the purpose of volatility forecasting in 

the context of Ethereum. The Akaike’s Information Criterion (AIC) due to Akaike (1974) is 

defined as: 

AIC = -2 ln (L) + 2k 

where k is the number of estimated parameters, including the intercept and the variance, and L 

is the maximum likelihood of the model. AIC provides flexibility (as it is applicable to any 

model with maximum likelihood value) and model fit emphasis. However, it is criticized for 

its tendency to select models with more parameters, potentially leading to overfitting (Stone, 

1979). Furthermore, Hurvich and Tsai (1989) concluded that AIC is based on large-sample 

theory, as it may not be the most reliable indicator for a small sample size. 

 

The Bayesian Information Criterion (BIC), also known as the Schwarz Information Criterion 

(SIC), is grounded by Bayesian probability and aims to pinpoint the model that is most likely 

to have generated the observed data (Schwarz, 1978). The mathematical specification of the 

BIC can be represented as: 

BIC = -2 ln(L) + k ln (T) 

where L is the maximum likelihood of the model, k is the number of estimated parameters, 

and T is the sample size. The major benefit provided by BIC is that it imposes a higher penalty 

on each additional parameter that is used in the model.  
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Another criterion, The Hannan-Quinn Information Criterion (HQIC), was developed to find a 

balance between the leniency of AIC and the strictness of BIC in terms of model complexity 

(Hannan and Quinn, 1979). The HQIC is mathematically defined as: 

HQIC = -2 ln(L) + 2k ln (ln (T)) 

where L is the maximum likelihood of the model, k is the number of estimated parameters, 

and T is the sample size. While HQIC makes the same assumptions as AIC and BIC 

regarding sample sizes, its penalty term is less severe than BIC, making it more appropriate 

for samples with a medium or small size. 

The better fit of the model is determined based on the smaller values of these information 

criteria. For more information on those models, please refer to Fang (2011) and Burnham and 

Anderson (2004). 

3. RESULTS 

Table 1 illustrates descriptive statistics and unit root tests associated with the Ethereum closing 

returns throughout the sample period. The average daily log return is observed to be 0.0008, 

suggesting a comparatively modest daily return on average. This finding presents a notable 

distinction from the median daily log return, which has a value of 0.0003. This observation 

provides additional evidence indicating that the dataset may not adhere to a symmetrical 

distribution. 

 

Table 1. Sample statistics & ADF and PP test. 

 

  

Observations 2700 

Mean  0.0008  

Median  0.0003  

Max  0.1123  

Min  -0.2561 

Std. Dev.  0.0235 

Kurtosis  11.7085 

Skewness  -0.5840 

ARCH (5) test  18.9489*** 

JB  8683.81*** 

    

Unit root test statistics   

ADF -35.86*** 

PP -54.4132*** 

 

The ARCH (5) test suggests the presence of conditional heteroskedasticity in the series. The 

result indicates that there exists an ARCH effect in Ethereum daily returns, suggesting the AR 

model for the conditional mean needs to be expanded to capture the ARCH effect for 



Volatility Forecasting for Ethereum: A Comparison of Arch and Garch-Type Models 

29 

conditional variance. The Jarque-Bera (JB) statistics exhibit statistical significance, supporting 

the fact that the series displays a substantial departure from a normal distribution. 

In addition, to test the stationarity of the series, the Augmented Dickey-Fuller (ADF) and 

Phillips-Perron (PP) unit root tests were performed. The ADF test indicates the null hypothesis 

of a unit root is rejected, providing evidence that the series is stationary. The finding is 

supported by the PP test, which indicates statistical significance at the 1% level. This further 

confirms the stationarity of the series. 

Table 2 presents a summary of the estimation outcomes for respective models, namely ARCH 

(1), GARCH (1,1), GJR-GARCH (1,1), and EGARCH (1,1). The objective of these models is to 

effectively capture the presence of conditional heteroskedasticity in the returns of Ethereum. 

All the estimated parameters exhibit statistical significance at the 1% level, as indicated by their 

p-values, which are practically indistinguishable from zero. 

Starting with the ARCH (1) model, it is observed that the constant term (α0) exhibits a high 

level of significance as indicated by a p-value that is essentially zero. The ARCH coefficient (α) 

is determined to be 0.2877, demonstrating statistical significance and indicating the existence of 

autoregressive conditional heteroskedasticity in Ethereum returns. In the GARCH (1,1) model, 

the constant term is estimated to be 1.748, and the GARCH (β) parameter is estimated to be 

0.7733. Both of these estimates are found to be statistically significant. The ARCH coefficient 

(α) is estimated to be 0.1813, which is slightly lower compared to the ARCH model, but 

remains statistically significant. 

In the context of the GJR-GARCH (1,1) model, which incorporates the consideration of 

volatility asymmetry, the values of the constant and GARCH term exhibit a relatively 

consistent pattern, with respective magnitudes of 1.770 and 0.7817. The GJR-GARCH 

coefficient (γ) suggests that the impact of negative shocks on Ethereum returns appears to 

result in a relatively smaller rise in volatility compared to the effect of positive shocks, which is 

consistent with the study of Baur & Dimpfl (2018) which showed that, unlike traditional 

markets, positive shocks have a greater impact on volatility than negative shocks in the 

cryptocurrency markets. Conversely, in the EGARCH (1,1) model, the presence of a positive ψ 

coefficient typically suggests that negative information will result in an increase of conditional 

volatility, showing controversial results in comparison with the GJR-GARCH model in terms 

of the leverage effect.  

The EGARCH (1,1) model exhibits the lowest values for the AIC, BIC, and HQIC information 

criteria in the context of model selection. This finding indicates that, out of the models 

examined, the EGARCH (1,1) model demonstrates the most optimal fit for the Ethereum 

returns data. 
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Table 2. Estimation results of the ARCH and GARCH-type models for Ethereum returns. 

 

        

 

ARCH (1) GARCH (1,1) GJR-GARCH (1,1) EGARCH (1,1) 

Constant (α0) 20.836*** 1.748*** 1.770*** 0.285*** 

 

 (0.000000)  (0.000000)  (0.000000)  (0.000000) 

ARCH (α) 0.2877***  0.1813*** 0.2230*** 0.3363*** 

 

 (0.000000)  (0.000000)  (0.000000)  (0.000000) 

GARCH (β)  -  0.7733*** 0.7817*** 0.9184*** 

  

 (0.000000)  (0.000000)  (0.000000) 

GJR-GARCH 

(γ)  -   -  -0.1088*** - 

   

 (0.000000) - 

EGARCH (ψ)  -   -   -   0.0465***  

         (0.000012) 

AIC 1.6496 1.624 1.623 1.6195 

BIC 1.6492 1.6234 1.6222 1.6187 

HQIC 1.65 1.6247 1.6239 1.6204 

     

Figure 2 displays the estimated volatility dynamics of Ethereum returns for the respective 

models. One notable observation is the disparity in the volatility peaks exhibited by the ARCH 

and GARCH models. The ARCH (1) model demonstrates significant spikes in volatility, 

suggesting its susceptibility to short-term disturbances in returns. 

 
Figure 2. Comparison of ARCH and GARCH-type models for Ethereum volatility. 

The statement aligns with the foundation of the ARCH model, which specifically emphasizes 

the capture of the direct influence of returns on subsequent volatility, consequently leading to 

more pronounced peaks during times of market turbulence. The GJR-GARCH (1,1) and 

EGARCH (1,1) models illustrate considerably lower peaks (EGARCH (1,1) being the lowest) by 

introducing further sophistication to the estimation of volatility by incorporating asymmetry in 

response to the positive and negative shocks. 
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During the evaluation of the EGARCH (1,1) model's ability to forecast Ethereum volatility in 

out-of-sample periods, two key metrics were utilized: the Mean Absolute Percentage Error 

(MAPE) and the Percent Correct Sign Predictions. The findings are presented in Table 3. The 

Mean Absolute Percentage Error (MAPE) was implemented in order to measure the precision 

of the model in forecasting the real levels of volatility. The model demonstrated a Mean 

Absolute Percentage Error (MAPE) of 3.92%, indicating a notable degree of precision in its 

predictive capabilities. 
 

Table 4. Residuals Diagnostics 

Metrics Result 

MAPE  3.92% 

% of Correct Sign Prediction  83.33% 

 

In addition, the model was assessed for its capacity to accurately forecast the direction of 

volatility movement, as determined by the Percent Correct Sign Predictions metric. The model 

demonstrated a noteworthy ability to accurately forecast the direction of volatility fluctuations, 

achieving an 83.33% correct prediction rate during the out-of-sample period spanning from 

August 1, 2023, to August 31, 2023. This further strengthens the validity and usefulness of the 

model as a reliable tool for predicting short-term dynamics in Ethereum volatility. 

4. ROBUSTNESS AND LIMITATIONS 

A series of diagnostic tests were conducted on the standardized residuals of the selected 

EGARCH (1,1) model in order to evaluate its robustness and reliability. Two pivotal 

examinations were conducted, namely the ARCH-LM test to assess conditional 

heteroskedasticity and the Ljung-Box test to evaluate autocorrelation in residuals (Table 4). 

Both tests were conducted using a lag length of five in order to ensure a thorough assessment 

of the model's performance. 
 

Table 3. Out-of-sample forecasting results for EGARCH (1,1) model. 

Metrics p-Value 

ARCH-LM (5)  0.00095 

LBQ test (5)  0.00004 

The findings from the ARCH-LM test revealed the existence of ARCH effects in the residuals, 

thereby prompting inquiries into the model's ability to accurately capture all pertinent 

volatility dynamics. Similarly, the Ljung-Box test also indicated the presence of residual 

autocorrelation, thereby raising doubts regarding the overall adequacy of the model. 

The diagnostic results indicate that although the EGARCH (1,1) model demonstrates the most 

favorable fit compared to the other models assessed, it is not free from limitations. The 

presence of ARCH effects and autocorrelation in the residuals suggests the potential existence 

of unobserved structures or dynamics in the data that are not adequately captured by the 

EGARCH (1,1) model. Hence, while the EGARCH (1,1) model offers a valuable framework for 

modelling Ethereum returns, these findings suggest the need for additional research for more 

advanced or alternative models capable of addressing these matters. 
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CONCLUSION 

The primary objective of this study was to investigate the volatility patterns of Ethereum 

returns by employing and comparing different volatility models, specifically ARCH (1), 

GARCH (1,1), GJR-GARCH (1,1), and EGARCH (1,1). The study aims to determine the 

optimal model for capturing and predicting the volatility patterns for Ethereum, while 

further evaluating the out-of-sample accuracy of the better-fit model to assess the 

predictability power of the model in determining short-term volatility dynamics. 

The empirical results suggest that the EGARCH (1,1) model is the most appropriate and 

better-fit model in terms of predicting the volatility of Ethereum. This finding corroborates 

the finding put forth by Naimy and Hayek (2018) for Bitcoin volatility, further reinforcing 

the utility of the EGARCH (1,1) model in volatility modelling for cryptocurrencies. 

Furthermore, the EGARCH (1,1) model has shown promising outcomes in predicting out-of-

sample data, as evidenced by the mean absolute percentage error (MAPE) and percentage of 

correct sign predictions. 

Nevertheless, it is important to acknowledge that the study does have certain limitations. 

The research primarily concentrates on Ethereum, thus raising questions regarding the 

applicability of the findings to other cryptocurrencies or asset categories. Subsequent studies 

may enhance the scope of this study by encompassing a wider array of digital assets using 

both daily and hourly data or by utilizing more intricate GARCH-type models. 
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